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An effective algorithm is established for solving in integers #, y any Diophantine equation of the
type f(x, y) = m, where f denotes an irreducible binary form with integer coefficients and degree
at least 3. The magnitude, relative to m, of the bound furnished by the algorithm for the size of all
the solutions of the equation is investigated, and, in consequence, there is obtained the first
generally effective improvement on the well known result of Liouville (1844) concerning the accu-
racy with which algebraic numbers can be approximated by rationals.
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1. INTRODUCTION

It was proved by Thue (1909) that the Diophantine equation

f(x>.7/) =m, (1)

where f denotes an irreducible binary form with integer coefficients and degree at least 3,
and m is any integer, possesses only a finite number of solutions in integers x,y. Thue dis-
covered the theorem by way of his fundamental studies on rational approximations to

Y B \

— algebraic numbers, which were later profoundly developed in the celebrated works of
§ P Siegel (1921) and Roth (1955) ¥, and which formed the genesis of many other investigations.
oH But Thue’s theorem, like all subsequent developments, suffers from one basic limitation,
5 that of its non-effectiveness. The proof depends on an assumption, made at the outset, that
E 8 (1) possesses at least one solution in integers x, y with large absolute values, and the argu-
~ ment provides no way of deciding whether or not such a solution exists. A proof of Thue’s

theorem, in the case when f(x, 1) has at least one complex zero, was given by Skolem (1935)}
by means of a p-adic argument very different from the original, but this also is of a non-
effective character. Indeed it would seem that even for cubic polynomials f, no generally
effective algorithm for the complete solution of (1) has hitherto been established, although

+ See also Schneider (1936, 1957), Dyson (1947), Gelfond (1952).
1 Cf. Borevich & Shafarevich (1966, ch. 4).

PHILOSOPHICAL
TRANSACTIONS
OF

Vor. 263. A. 1139. (Price 19s.; U.S. $2.45) 22 [Published 18 July 1968

[ ,Q
o) Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @%I%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

174 A. BAKER

a wide variety of techniques have been successfully employed to treat particular equations
of this kind (cf. Skolem 1938).

The present paper is devoted to a new proof of Thue’s theorem, which proceeds by an
argument that is effective, and therefore provides an algorithm for the complete solution
of (1) in integers x, y. Let f(x, y) denote a homogeneous polynomial in x, y with degree n > 3
and with integer coeflicients, irreducible over the rationals.t Suppose that

k>n+1 (2)
and let m be any positive} integer. The main result of this paper is as follows.
THEOREM 1. All solutions of (1) in integers x, y satisfy
max (|, |y]) < Celosmr,

where C is an effectively computable number depending only on n, « and the coefficients of f.

The proof of the theorem depends essentially on the methods developed in two recent
papers (Baker 1966, 1967) for the study of linear forms in the logarithms of algebraic numbers.
It is necessary to modify the arguments of these papers to some extent, however, in order to
apply them in the present context, and a self-contained exposition will therefore be given
in which no knowledge of the earlier work is assumed. In fact a theorem on the logarithms
of algebraic numbers of a slightly different nature to those obtained previously will first be
proved (see § 2) and theorem 1 will then be established as a consequence of this result. The
condition (2) above plays a similar réle to the condition (1) of the first of the cited papers,
and a relaxation in the latter condition, derived from an improvement in the basic
techniques, would very likely lead to a corresponding (though not necessarily the same)
relaxation in the former.||

From theorem 1 one obtains as an immediate deduction:

THEOREM 2. Suppose that o is an algebraic number with degree n = 3, and that k > n+1. Then
there ts an effectively computable number ¢ = ¢(a, k) > 0 such that

V4

a—LE > cqgelog '™ (3)

for all integers p, g (¢ > 0).

To verify this result it suffices to assume that ¢ is real. If now (3) were not valid and if f(x)
denotes the minimal defining polynomial of o with relatively prime integer coefficients, then
the mean-value theorem would give

7| f(pl9)| = ¢ |f(plg) —f(a)| <c'q"|a—p[q| < cc’ elosar™

for some ¢’ = ¢’(«) > 0, and, since y"f(x/y) is a binary form with integer coefficients, this
would clearly contradict theorem 1 if ¢ is chosen sufficiently small.
Theorem 2 represents the first generally effective improvement on the well known result

1 The terms ‘form’ and ‘homogeneous polynomial’ are used synonymously. fis said to be irreducible
over the rationals if it cannot be expressed as the product of two binary forms with integers coefficients and
degree less than n; by Gauss’s lemma, f then also cannot be expressed as a product of binary forms with
rational coefficients.

+ The assumption that m is positive involves no loss of generality.

|| Added in progf, 9 May 1968: A third paper on linear forms in the logarithms of algebraic numbers has
recently been published (Mathematika 14 (1967), 220-228) and it is shown here that the earlier requirement
k > n+1 can be relaxed to k > n; the same improvement can be obtained in the present context.
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REPRESENTATION OF INTEGERS BY BINARY FORMS 175

of Liouville (1844). Liouville simply observed that ¢ |f(p/q)| above is a positive rational
integer and so the number on the left of (3) exceeds ¢g~" for some easily calculated
¢ = ¢(a) > 0. The much deeper works of Thue (1909), Siegel (1921) and Roth (1955) (see
also the other papers cited earlier) show that ¢g=" can be replaced by ¢~ for any « > 2, but,
as remarked earlier, the proofs are non-effective and do not enable this ¢ = ¢(a, k) > 0 to be
explicitly calculated. Some quantitative results in the direction of theorem 2 have previously
been established for certain fractional powers of rationals (see Baker 1964 a, b), but here the
arguments depend on particular properties of Gauss’s hypergeometric function and the
results would therefore seem to be of a rather special character. On the other hand, when
applicable, the estimates obtained are stronger than those implied by theorem 2.

Theorem 1 may be regarded as the solution to a particular case of the tenth problem of
Hilbert (1gor). The question now arises as to how far the work here can be extended to give
an effective algorithm applicable to other Diophantine equations in two unknowns. Siegel
(1929) succeeded in generalizing Thue’s original result and thereby established a simple
necessary and sufficient condition for any equation of the form F(x, y) = 0, where F denotes
a polynomial with integer coefficients, to have only a finite number of solutions in integers
¥, y. But Siegel’s proof employs Weil’s famous generalization of Mordell’s finite basis
theorem, and this again possesses a certain non-effective character. Thus it would seem that
Siegel’s work cannot lead directly to a quantitative extension of theorem 1.7 Nevertheless, it
is well known that many Diophantine equations in two unknowns can readily be reduced
to a finite number of equations of the type (1), whence an effective algorithm is now avail-
able for their complete solution. These include, for example,

y? = x3+k,
where £ is any integer, an equation which has long been a notable feature in the theory
of numbers (cf. Mordell 1913, 1947, 1963). This will be the theme of Part IT of the present
paper.
2. ON THE LOGARITHMS OF ALGEBRAIC NUMBERS

The purpose of this section is to give a precise formulation of the main result on linear
forms in the logarithms of algebraic numbers which is fundamental to the proof of theorem 1.
The following notation will be adopted. «;,...,a, will denote n > 2 non-zero algebraic
numbers. The maximum of the degrees of ay,...,a, will be supposed not to exceed an
integer d. 4,, ..., 4, will be used to denote the heights of «,, ..., «, respectively, that is the
maximum of the absolute values of the relatively prime integer coefficients in their minimal
defining polynomials. 4 will be written briefly for 4,, and A" will signify any number
exceeding both |a,| and |e,|"!. loga,, ...,loga, will be understood to mean the principal
values of the logarithms. It will be supposed that d > 0.

In § 7 it will be shown that the proof of theorem 1 can be reduced to the demonstration of
the following result.

THEOREM 3. Suppose that k > n+1 or k > n+2 according as a,, ...,a, are or are not all real.
Suppose further that by, ..., b,_, are rational integers with absolute values at most H, such that

0<|ab...alrj—a,| <e?H, (4)

T A stronger version of (3) would also be required for the effective application of Siegel’s argument.
22-2
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176 A. BAKER

Then H < max {C, (log 4)<), (5)
where C denotes an efffectively computable number depending on n, d, 8, «, Ay, ..., 4,_, and A’, but not
on A.

We proceed now to prove that it suffices to establish a modified form of theorem 3 which
relates to the logarithms of a;, ..., ,, in place of a product of powers. First, we note that for
any complex number z, the inequality |e?—1| < 1 implies that

|z—ikn| < 4|e—1] (6)

for some rational integer £ (i denoting, as usual, (—1)*). For on writing z = x -1y, where
x and y are real, and putting 7 = |e*— 1|, we obtain

efcosy—1| <7, |efsing| <y
Y

The first inequality gives |e*cosy| = 1—#, and on combining with the second we get
[tany| < 7/(1—75). Now there is a rational integer £ such that y’ = |y—kn| satisfies
0 <y’ < {mand, on noting that x — tan x decreases for 0 < x < 17 and that y < 1 we obtain

|y—kn| < tany’ = |tany| < 7/(1—7) < 27.

This gives the required inequality (6), since obviously |e*—1| < 7 and so

|%| < max (log (1+7), log (1—7)~1) <log (1+27) < 2.

It follows immediately from the last result that if (4) holds and if e## > 4 |q,|~! then there
is a rational integer b, such that

0 < |bylogag+...+b,_ loga, ;—loga,| < 4|a,| L e0H < e 40H,

where «; = —1. Furthermore, if ,,...,a, are all real, then these inequalities hold with
by = 0, provided that «,, ..., o, are replaced by |a,], ..., |o,| respectively. It is now clear that
in order to prove theorem 3 it suffices to assume that n, ay,...,a,, 4,,...,4,, d and § are
given as above, that « satisfies (2), and thence to establish the assertion (5) under the new
hypothesis that there exist rational integers by, ..., b,_, with absolute values at most H such
that 0 < |bloga,+...+b, loga, —loga, | < e ?H, (7)

The inequality (7) is similar to the inequalities considered in Baker (1966, 1967) but no
supposition has been made concerning the linear independence of logay, ...,loga, over
the rationals, and this supposition played an essential role in the earlier work. It is therefore
necessary to further modify the hypotheses of theorem 3, and the result which we shall
finally prove is as follows.

THEOREM 4. Suppose that by, ..., b, are rational integers with absolute values at most He¢ (where
H, g denote positive integers) such that

0 < |bloga;+...+b,loga,| < e %, (8)
Suppose further that there are no integers by, ..., b, with absolute values at most H for which

biloga,+...+b,loga, = 0, (9)
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other than by = ... = by, = 0. Then (5) holds for some effectively computable number C depending on't
n,g,d,0,k,A4,,...,4,_1 and 4’, but not on A. ‘

To show that theorem 3 follows from theorem 4 it is enough now to verify that from the
existence of rational integers 4,, ..., b,_;, with absolute values at most H, such that (7) holds,
one can deduce the existence of an integer £ between 1 and 7 inclusive, with the following
properties: (i) There are rational integers b;,...,0,, having absolute values at most
(2H)»~k+1 such that (8) is valid with e~*# on the right replaced by H*~*e~%#, (ii) at least
n—k of the integers b, ..., b, are 0, (iii) the only integers 4y, ..., b, with absolute values at
most H such that (9) holds and such that also 4; = 0 whenever b; = 0, are given by
by = ... = b, = 0. For if such an integer £ exists then clearly the hypotheses of theorem 4 will
be satisfied with » now given by the number of non-zero 4;, with g defined as twice the
original n, and with § replaced by 3J, assuming, as we may, that H exceeds a sufficiently
large number C as above. Note here that theorem 4 is applied to an arbitrary subset of the
original a4, ..., 2, and the necessity to distinguish between 4 = 4, and 4,, ..., 4,_, does not
always arise. To prove the existence of an integer £ with the above properties we observe
first that since, by virtue of (7), (i) and (ii) hold for £ = , it can be assumed that (iii) does
not hold for £ = n. Then there is a least positive integer £ for which (i) and (ii) hold but
(iii) does not, and obviously (ii) implies that £ > 1 (assuming again that H > C). Let

1,+.., b, denote a set of integers with the properties specified by (iii), other than
by = ... = b, = 0. Suppose in fact that b; &= 0 and put

by = bjbj—bjb, (1<j<n),
where by, ..., b, denote integers satisfying (i) and (ii). Clearly (8) and (9) imply that
0 < |7 loga,+...+byloga,| < |b)| H* ke 0H < Hr—k+1e-0H,

Further we have 4] = 0 whenever b, = 0, and since also b/ = 0, b, & 0 we see that at least
n—k-+1 of the integers b7, ...,b, are 0. Moreover, the 5] have absolute values at most
(2H)»~k+2, Thus (i) and (ii) hold with £ replaced by £—1. But, by the minimal choice of £,
also (iii) must then hold with % replaced by £—1, and so £— 1 has all the required properties.

3. PRELIMINARIES TO THE PROOF OF THEOREM 4

The next two sections will be devoted to the proof of theorem 4. In this section we intro-
duce the notation that will be needed subsequently, and we record a few preliminary
observations.

First, we note that if « is an algebraic number with degree d and height H then || < dH.
For if o satisfies an equation of the form

ayol a0+ .. +a, =0,

t For the deduction of theorem 3 we shall require the observation that » here can be replaced by any
integer n’ satisfying #” > n and x > n’+1. In fact it will be seen that C can be expressed as a continuous
function in the variables #, g, d, 8-, , 4,, ..., 4,.,, 4’ and (k—n—1)~!, monotonic increasing with respect
to each. Further, we have (k —n—1)~! < 1 if there exists an integer #’, other than n, with the above pro-
perties. Note also that a feature in the previous work on the logarithms of algebraic numbers which would
have introduced a discontinuity into C has been avoided here (sée the footnote on p. 213 of Baker 1966).


http://rsta.royalsocietypublishing.org/

) |
o \
C

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

178 A. BAKER

where the g; denote integers with absolute values at most H and 4, > 1, then either |¢| < 1 or
la| < |aga| = |ay+aya '+ ... fa,07¢ | < dH.
Secondly, we observe that for each non-negative integer j we have
(ap0)! = a{’+aPa+...+a P a1,

where the 4Y) denote integers with absolute values at most (2H)/; this follows easily from
the recurrence relations

a) = agay"—a, ,di”P (0<m<d,j=d),
where a¥7V = 0.

The notation introduced at the beginning of § 2 will be assumed without change, and it
will further be supposed that g is a positive integer and that « satisfies (2). C,¢,, ¢y, ... will
denote numbers, greater than 1, which can be specified explicitly in terms of , g, d, J, «,
4,,...,4,_,and A" only. The number C, which will finally represent the constant occurring
in the enunciation of theorem 4, will be supposed sufficiently large throughout. We assume
now that the hypotheses of theorem 4 hold but that the conclusion is not valid, and we shall
ultimately deduce a contradiction. Thus we assume that there exist rational integers
by, ..., b, with absolute values at most /¢ such that (8) holds, that the only integers 41, ..., b,
with absolute values at most A such that (9) holds are given by 4] = ... = b, = 0, and that

H > max{C, (log A)*}. (10)

Further we assume that 4, = 0; this involves no loss of generality for, by (8), one at least of
by, ..., b, 1s not 0, and, clearly, if b, = 0 then, after modifying the notation, it would suffice
to prove a less precise result in which C could possibly depend on 4. For brevity we write

Bi==bilb, (1<j<n),
and we note that §,, ..., /,_, satisfy

0 < |floga,+...+f,_ loga, ,—loga,| < e ?H, (11)

Also since, for any complex number z,
lee—1| < |z| e, (12)
we Obtaln from (ll)T I(xpil---aﬂ,?___ll”‘“(xnl < |an|e_3H+1. (13)

We now define

{=2/(k+n+1), = {1—1/(k)}/(2n),
and we observe that, by (2), we have

Ik <{<1/(n+1) and 0<e<1/(2n).
We write h—8g[logH], = [HY],
where, as usual, [x] denotes the integral part of x. Further we define

L=Ly=..=L, =[], L, =[k],
and we put D = d".

t It will be understood that z* = e¥!o22, where log z denotes the principal value of the logarithm.
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Finally, for any integral function f(z,, ..., z,_,) of the complex variables z,, ...,z,_; and
any non-negative integers m, ..., m,_, we write

9m1+...+mn-|

‘fml,...,mnvx(zb ey Zyy) = 92{'37*52?15 (21, '“:Zn—l)'

4. LEMMAS

This section establishes six lemmas preliminary to the proof of theorem 4. As remarked
earlier, the arguments given here are similar to those employed in Baker (1966, 1967), and
indeed some parts of the discussion have been adopted without change. Nevertheless,
proofs to all the lemmas have been supplied in detail.

LemMA 1. Let M, N denote integers with N> M > 0 and let u; (1 <i< M, 1<j<N)
~ denote integers with absolute values at most U. Then there exist integers x,, ..., %y, not all 0, with
absolute values at most (NU)M/N=M) sych that

N
Su;x; =0 (1<i<M). ‘ (14)
=1
Proof. We put B = [(NU)M/®™-M] and we note that there are (B+1)¥ different sets of
integers xi, ...,y with 0 < x; < B (1 <j < N). For each such set we have :
—VB<y, <WB (1<i<M),
where y; denotes the left-hand side of (14), and —V;, W, denote the sum of the negative and

1

positive #;; (1 <j < N) respectively. Since V,+W, < NU, there are at most (NUB+1)¥
different sets y,, ..., 4. Now (B1)¥-M > (NU)M

and so (B+1)¥ > (NUB+1)M. Hence there are two distinct sets x,, ..., xy which correspond
to the same set y,, ..., ¥, and their difference gives the required solution of (14).

LemMA 2. There are integers p(A,, ..., A,), not all 0, with absolute values at most e, such that the
Sunction L

Ly
D(zpy s zpg) = 2 on 2 plAgy e ) AP atifry,
A1=0 An=0
where y, = A, + 1,0, (1 < r<n), satisfies
L Y )l R (15)

for all integers [ with 1 < I < h and all non-negative integers my, ...,m, | with m;+...+m, | <k.
Proof. We shall determine the p(4,, ..., 4,) such that
L Ly
S D pA, A altaty Ly =0 (16)
/\1=0 /\n=0

for the above ranges of [ and m,...,m,_;, and we shall verify subsequently that (16)
implies (15). Let ay, ..., a, denote the leading coefficients (supposed positive) in the minimal
defining polynomials of «,, ..., @, respectively. Then for any non-negative integer j we have

. d—‘.l .
(ar(xr)] = ZO ag'}s)“% (17)
=

where the 4 denote rational integers with absolute values at most ¢/ or (24)7 according as
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180 A. BAKER
r<<norr=n (see §3). Thus multiplying (16) by
a{lll . (lﬁ‘"l brrlnl-l—,..-Hnnq,

and substituting from (17) for the powers of 4, «,, we obtain the equation

d—1 d—1

S e 3 Ve ar=0,
$1=0 Sp=
N Ly Ly
where Vo) = 3 o 3 pl ) o(hs)
/\1:0 \H
and (/1 S) . a(Ln An)la()\nl)n {d(L '\r)ld;/‘;,l) (b /1 +b /1 )mr]

Hence (16) will be satisfied if the D equations V(s) = 0 hold. Now these represent linear

equations in the p(4,,...,4,) with integer coefficients. Further, since

[<h, m—+..4+m_ <k L <L

and, by hypothesis, the integers b, have absolute values at most H¢, we deduce easily that
the coeflicient (4, 5) of p(4,, ..., 4,) in the linear form V(s) has absolute value at most

U = cb (24) 1t (2LHE)*,

Now there are at most (£4-1)""! % distinct sets of integers /, m,, ..., m,_,, and hence there are
M < D(k+1)"'h equations V(s)=0 corresponding to them. Further, there are
N = (L,+1)...(L,+1) unknowns p(4,,...,4,) and

N> k(fz—l)(l—e)+ne — kn—l+e ~ QM,

since, clearly, £ exceeds any fixed power of 2if H is sufficiently large. It follows from Lemma 1
that the system of equations V(s) = 0 can be solved non-trivially, and indeed the integers
p(4y,...,4,) can be chosen to have absolute values at most NU. Now by (10) and the defini-
tions introduced at the end of § 3 we obtain

L,log A < kreHVx < kne(2k) V&0 < 2f1-ne, (18)
and since also 2LHe < 2kHe < Hetl < ebt, (19)
it follows eaSily that NU < k”(262)1‘h ehln log A+4hk < ehk,

as required.
It remains only to verify that (16) implies (15). Now it is clear that the left-hand side of

(16) is obtained from ®, . .  (/,...,), apart from a factor

P = (loga;)™... (loga,_,)" (20)
in the latter, by substituting «,, for %} ... a%—1. From (13) we deduce that
@ B =] < A ([ + 100 o . iy | < el e < e,

Further we have | P ..oty Ly | << ch L (2LHE)E < ek,
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Thus we obtain ®

Myyerey

s (b oo O] < (Ly4-1) .0 (L, 4-1) €2k ik e—0H
and (15) follows since L, < L < k and hk < H*. This completes the proof of the lemma.
Lemwma 3. For any non-negative integers my, ..., m,_, with

my+...+m, | <k
and any complex number z we have

1D ooy (250005 2) | < €E 14, (21)
Further, for any integer | with 1 < [ < hkA/9O+ke=1_ egther (15) holds or
R (R I Gl D (22)

Proof. We have
Ly
D, (2. z)=P 3 ...Aéop(/ll, wdy) g(4,2),

A1=0
where P is given by (20) and
q(A,z) = arz oAyt
Now (11) implies that b= .. affry?] < elloani+DIz,

and since lloga,| < max (|a,], |a,| 1) +27 < 4’42,

and also, by (19), |y,| < 2LHe < et*, we obtain
n—1
|Pg(A,2)| < H{c”z’ (cg €2M)mr} < L7l ok ebhk,
=1

Then (21) follows on noting that there are at most £* terms in the above multiple sum and
that the p(4,,...,4,) have absolute values at most e,
To prove the second assertion we begin by defining

Ly Ly

Q=P 3 ... 2 p(d;..,4,) ¢'(1,1),
AIZO An=0

where P =alt.. . aletpmtemae g (M) = adt gty Ly

and the a, are given as in the proof of lemma 2. Then itis clear that @ represents an algebraic

integer with degree at most D. Further, on recalling the observation recorded at the
beginning of § 3, applying (18), and noting also that, by (19),

|bnm.+...+m,,_.y1lnl 7,',”31?| < e%hk,

we see that any conjugate of @, obtained by substituting arbitrary conjugates for a,, has
absolute value at most

(Ly4-1) .. (L, +1) b (dA)2Lnt itk < clfe?k,
Thus if @ 4 0 we have |norm @| > 1 and hence
Q] = (eeff) >,
Now from (13) we obtain (cf. the end of the proof of lemma 2)
lg(, ) —¢' (4, D)] < eff 08,

23 Vor. 263. A.
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and, by virtue of the inequalities L < k!-¢, £ < H* and the supposition < Ak1/9+4¢-1] the
number on the right is at most e~##, Hence we deduce that

|P-10,, L. —P1Q| < (Ly+1)...(L,+1) e~ H L e=30H,
But since, again by (18) and (19),

|P’| & cLl ALn ngli 6-Ll ehk

1y 0005 Mn—1 (

and since also _ ok
614 < IPI chs,

we see that either ) = 0 or
IPP’ IQI > Cth()Ll) > 2e~ 2‘3H

further we have Pe ## < e~+%# Thisimmediately establishes the second part of the lemma,
the asserted alternatives corresponding to the cases @ = 0 or Q == 0.

LemMA 4. Let J be any integer satisfying 0 < J < 1, where
T=¢ n—14+¢1)+1. (23)

Then (15) holds for all integers | with 1 < | < hk¥¢’ and each set of non-negative integers my, ..., m
withm,+ ... +m,_, < k[27.

Proof. The lemma is true for J = 0 by lemma 2. We suppose that K is an integer satisfying
0 < K <7—1 and we assume that the lemma is true for J = 0,1, ..., K. We proceed to
prove the validity of the lemma for J = K+1.

We begin by defining

R, = [hk¥e’], S,=[k/2'] (J=0,1,...).
It suffices then to prove that for any integer [ with Ry <! < Ry, , and any set of non-
negative integers m, ..., m,_; with m;+...+m,_; < Sg,, we have
|f()] < e toH, (24)

where f2)=0, . . (z..2).
By our inductive hypothesis we see that for each integer r with 1 < r < Ry and each integer

m satisfying 0 < m << Sg,, we have
| fu(r)| < ket (25)

for f,,(r) is given by P g \m
(7'4*1— —l—gz“_) ®m1,-.-,77ln~1(zl’ "'7Zn——1>

evaluated at the point z; = ... = z,_; = r, that is by

é{, ...jn_ﬁlzomz G o) Do v s (7o),
FTE S A—
and the absolute values of the derivatives here are at most e #%# since
mi+.oAm,_ g < k2K
We write, for brevity, F(2) = {(z—1)...(z— Ry) )= +1

and we denote by I the circle in the complex plane, described in the positive sense, with
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centre the origin and with radius Ry, logk. Then by Cauchy’s residue theorem we have

1 S(2) JU) 1 %« S’“‘f )
‘z"%"ifr G F T e 2 2 fpr =) F(z (26)

where I, denotes the circle in the complex plane, described in the positive sense, with
centre 7 and radius %; for the residue of the pole of the integrand on the left at z =r is

given by 1 dSen ((z—1)Sentlf(z)
SK+1!szK+l{ (z—1) F(z) ;

evaluated at z = r, and the integral over I', on the right is given by

Qﬂi dSmH—m {(Z—T)SK“’LI}
(Sxr1—m) 125\ (z—1) F(z)

again evaluated at z = 7, and (26) now follows by Leibnitz’s theorem. Since, for z on T,
]( ___r)m/F ‘ < SSK+1+1

we deduce from (25) and the inequalities
RK(SK+1+1) < }lk%e('r—l)+l < }lH%((n+l)§+l} < H, (27)

that the absolute value of the double sum on the right of (26) is at most
Ry (Siy 1) 8Sxrit2pk e300 L H(8n)ke 400 < e~ 10H,
Further it is clear that |F(I<)| RNk 4D < REE(Sz+D), (28)

Also since Ry, < hk*er and, by (23),

Jer = d(nH 1+ 1/0) +he—1 < (1O +de—1, (29)
we see that [ satisfies the condition of lemma 3, and thus either (24) holds or, by (22),
[f(D] > (e cghre)=2. (30)

We show that the assumption that (30) is valid leads to a contradiction.
By (27), (28) and the inequalities
Ry < hEVOT -1 < H  (n+1){ <1,
we Clearly have |F l)l < HRxSx+1) C%SH

if H is sufficiently large. Further, since LRy, < hk1/9-#¢, we deduce from (30) that

lf(D] > Qe ¥0H,
Hence we obtain IF(O)F ()| > 2 e 1A,

and, by virtue of the estimate for the double sum established above, it follows that the
absolute value of the number on the right of (26) exceeds | f(!)/F({)|. Now let § and ®
denote respectively the upper bound of | f(z)| and the lower bound of |F(z)| with z onTI".
Since 2|z—1|, with z on I, exceeds the radius of I, we obtain from (26)

40|F (1) > O|f(D)]- (31)
It is clear that © = (1R, log k)RxSxr1+D),

23-2
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and, by (21) of lemma 3, we have
I/ < e2hk (;%RK Hlogk_

Thus from (28) we deduce that
OF()|1 > (Hloghyrss,

and from (30) we obtain 01/ < CQhﬂCIRKHlOg,L)DH

Then (31) gives

log4+ (D+1){2hk+c¢;; LRy logk} = Ry (Sk.,+1) {loglog k—log 2}. (32)

But LRy, < hkte®=D+1 and so the number on the left of (32) is at most
cighk or ¢ g hkteE-D+l]ogk

according as K = 0 or K > 0. On the other hand we have
Re(Sie1+1) = bkier (/25 1),

and, since K+1 < 7, we see that the number on the right of (32) exceeds

i hkteX+1oglog k.

The two estimates are obviously inconsistent (both for K = 0 and for K > 0) if % is suffici-
ently large; the contradiction implies the validity of (24), and the lemma follows by
induction.

LEmMA 5. For each integer j with 0 < j < k" we have
log [¢;(0)| < —kter=D1/logk, (33)

where P(z) = O(z,...,2).
Proof. We write, for brevity,

X = [ker=D], ¥ = [k/log k].

Then clearly [#k*¢7] > X and [£/27] = Y, where ¢ denotes the largest integer < 7, and so,
by lemma 4, we see that (15) holds for each integer [ with 1 < /< X and each set of non-
negative integers my, ..., m,_, satisfying m,+...+m,_; < Y. Hence we have

|8, (r)| < nFe (34)

for each integer r with 1 < 7 < X and each integer m satisfying 0 < m < Y (cf. the proof of
lemma 4). Let I'and A denote circles in the complex plane, described in the positive sense,
with centres the origin and with radii Xlog £ and f respectively. Suppose further that w is
any complex number on A. We proceed to calculate an upper bound for |¢(w)|.

We write, for brevity, E(2) = {(z—1)...(z— X)}¥*1,

By Cauchy’s residue theorem we have (cf. lemma 4)

1 ¢(z) ¢(w) $u(r) [ (z—r)"dz
Zfifp —w) E@) ¥~ Ew) 2m,§ mZO L, (z—w) E(2)’ (35)

where, as before, I, denotes the circle in the complex plane, described in the positive sense,
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with centre 7 and radius . Since, for zon T,
=B <8
and since also, by (29), X(Y+1) < kbetr-D+l < RUE < H,
it follows, on using (34), that the absolute value of the double sum on the right of (35) is
at most X(Y+1) 87 2k e~40H < (8p)k+2H e 10H < oM,

Now let £ and E denote respectively the upper bound of |¢(z)| and the lower bound of
|E(z)| with z on T'. From (35) we have

|$(w)| < {2E1+e HH} E(w)],
and it is clear that

|E(w)] < (X41)X¢+D  and |E| > (1 Xlog k)X@+D,

Since also, by (21) of lemma 3, £ < e2h lXlogk,

we obtain |9 (w)| < 2 2k cLX logk(Log k) ~X+D 4 (2X) 2XYe—7}8H’
and the second term on the right is at most e ## since clearly, by (29),
2XYlog (2X) < 2e(r—1) kter-D+1 L 19H,

On noting that L < k'€ and
X(Y+1) = Ykter-D+1log k, (36)

it follows easily that I$(w)] < (log k)~EX@+D),
Let now j be any integer satisfying 0 < j < £”. By Cauchy’s residue theorem we have

I 2 4 g.(0).

2m J awit!
Thus from the bound for |¢(w)| established above we obtain
|6,(0)| <j! 47 (log k) ~#xa+D,
Now clearly 14 < (4)) < ko,

and since, by (23), Lle(r—1)+1=}n+1+1/0) >n+1, (37)

weseethat 4 vy 1)loglogh > kter-D+1loglog kflog k = 2k log k.
Hence we have | ¢ (0)] < (logh)- —EX@D),
and this, together with (36), implies the validity of (33), as required.
LEMMA 6. Let ¢, ..., t, denote rational integers with absolute values at most T, and let
W =t loga,+...+1t,loga,.

Then either W = 0 or |W‘ > cl A ZD]t'n,l
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Proof. Let ay, ..., a, be defined as in the proof of lemma 2 but with «;! read for «; if'¢; < 0.
Then

w=adb ... ad(ah.. . ar—-1)

represents an algebraic integer with degree at most D. Further, by the first observation in
§3, we see that any of its conjugates, obtained by substituting arbitrary conjugates for
&y, ...5 0, has absolute value at most ¢ A2!%. If w = 0 then W is a multiple of 271 and
obviously the lemma is valid. Otherwise we have |norme| > 1 and hence

|| = (cZ, A21t)=D+1,
But since all... gt < ¢, Al
we deduce from (12) that || < | W] e, At

and on assuming, as we may, that |[W| <1, the assertion follows.

5. PROOF OF THEOREM 4

We proceed to verify that the inequalities (33) cannot all be valid. This will suffice to
establish theorem 4.

We write, for brevity, R= (L+1)e(L41)—1.
Then any integer 7 with 0 < 7 < R can be expressed uniquely in the form
r=A+AL+1)+...+A,(L+1)"1,
where 1;,...,4, denote integers satisfying 0 < /4; < L; (1 <j<n). For each such r we

define by =0, d), ¥, = A loga,+...+1,loga,,

and we write r
= S0 0<j<R).

Now it is easily seen that ‘¥ differs from ¢,(0) by at most an amount e~#%#, For clearly we

have I L, A
¢j(0) = AEO AZOP(/M: v dy) (1 logay+ ...+, loga, 1)/,
1= n=

and, since |¢,| < ¢,3L and j < R, we obtain from (11)
|(ylogay+ ... +7,-110g o, 1) — i < (cag L)R e
this gives 16,(0) = ;| < (R+1) e (cyy L)Re 0,
and the number on the right is at most e~# since
L<k~, R<k<<H™ (<1/(n+1).
It follows immediately from (33) (which is applicable since j < £7), (29) and the inequality
k< HE, that log [P < — bkter=+1log k. (38)

We now observe that each integer p, (0 < r < R) satisfies an equation of the form

AW = 20, (39)
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where A,(x) and oy, ..., 05 are defined by the identities

R
A, (%) = 1_[0 (x—,) = 09+ 0,8+ ... F0xxE.
sy

We shall compare estimates for the numbers on either side of (39). Clearly ¢, — ¢, (r == s) is
a linear form in loga,, ...,log @, with integer coeflicients, each coefficient having absolute
value at most L < k'=¢ <H, and not all the coefficients vanishing. Thus by the hypothesis
made at the outset, that the only integers b1, ..., b, with absolute values at most H such that
(9) holds are given by 8] = ... = b;, = 0, we see that ¥, — ¢, & 0 and so, by lemma 6,

V=] > e -2,

On noting that there are R < &" factors in the product defining A,, and using also (18) and
the inequality L < £, it follows easily that

lOg IAr(¢r)] = _625kn+1’

We proceed now to calculate an upper bound for log |A, (¢,)| for any 7 such that p, & 0;
there is certainly at least one 7 with this property. We have

R

ol T+l (0<j<R),

and, by virtue of the trivial inequality |¢;| < ¢,%, we see that the product on the right does
not exceed (¢,;k)®. Hence from (38) and (39) we obtain

log |p,A,(¥,)| <log (R+1)+Rlog (¢y,k) — §k+=*![log k.
By (37) and the inequality R < k7, it follows that
log [A,(¥,)| < —gkter=D+flogk

if k is sufficiently large. But, by (37) again, we see that this is inconsistent with the lower
bound for log |A,(¢,)| established above, and the contradiction proves the theorem.

6. PRELIMINARIES TO THE PROOF OF THEOREM 1

It remains now only to verify that theorem 3 implies the validity of theorem 1. The
present section serves to supply the definitions and preliminary results which will be needed
for the main argument given in § 7.

We observe first that if a, § are algebraic numbers with degrees at most ¢ and heights at
most H then a-f and of have degrees at most 42 and heights at most /', where log H’[log H
is bounded above by a number depending only on d. For let a, b denote the leading coeffi-
cients in the minimal defining polynomials of a, £, and let a®, /) denote their respective
conjugates. Then ¢+ and af are zeros of the polynomials

(ab)*TT (x— (aD+ D)), (ab)*TI (x—aDp)
ij ij
respectively, which clearly have integer coefficients and degrees at most 2. 'The zeros of the
minimal polynomials of a+/ and af are thus given by some subsets of the a¥+4% and
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«DB0) respectively, and the leading coeflicients divide (ab)#. The assertion now follows from
the fact that the a®, O have absolute values at most dH. For later reference we observe
that if «, &, #, ' (B = ') are algebraic numbers with degrees at most 4 and heights at
most H, then, by repeated application of the above results, it follows that (a—a")/(f—/’)
has degree at most d* and height at most /', where, as before, log H'[log H is bounded above
by a number depending only on 4; and, by the remark made at the beginning of § 3, the
absolute value of (¢—a')/(f—f’) is at most d*H’.

Suppose now that f(x,y), n, « and m are defined as in § 1. We note immediately that, for
the purpose of proving theorem 1, there is no loss of generality in assuming that the coeffi-
cient of x* in f(x,y) is +1. For let the coefficient be denoted by a. Then obviously
la|*~1f(x,y) can be expressed as a binary form F(X,Y) with integer coeflicients, where
X = ax, Y = y; further, the coefficient of X" in F(X, Y) is 4+ 1. Now if " = (k+n+1), so
that k > «" > n-+1, and if theorem 1 is valid with respect to F, then all solutions in integers
X, Y of the equation F (X, Y) = M, where M = m|a|""}, satisfy

max (| X|, |Y]) < C’ elog 2

for some C’ depending only on «" and the coeflicients of F'; and the desired bound for
max (|x, |y|) follows easily.

The zeros of f(x, 1) will be denoted by o, ...,a®. It will be supposed that the arrangement
is such that a®, ..., a® only are real, and that a“*Y, ..., a¢*9 are the complex conjugates of
ab*teD o™ respectively; thus it is implied that n = s+ 2¢. The assumption made above,
that the coefficient of ¥ in f(x, %) is + 1, further implies that ah), ..., «™® are algebraic integers.
The algebraic number field generated by a = a{V) over the rationals will be denoted by K,
and 60, ..., 0™ will represent the conjugates of any element ¢ of K corresponding to the
conjugates a,...,a® of a. C\,C,, ... will denote numbers, greater than 1, which can be
specified explicitly in terms of 7 and the coefficients of f.

Finally, we shall denote by 7,, ...,7, a set of 7 = s+/—1 units in K such that the deter-
minant A of order r with log |7{| in the ith row and jth column does not vanish. That such
a set of units exists is established, for example, by Landau (1918; p. 49, Satz 136; note here
that r > 0 since n > 3) as an intermediate stage in the proof of a classical theorem of
Dirichlet. It is not difficult to verify, by a study of Landau’s exposition, for example, that
the units 7, ..., 7, can further be chosen so that |A| > C;! and

llog [ | < C, (1<4,5<7)

for some effectively computable numbers C,, C, as above.

7. PROOF OF THEOREM 1

Suppose that x, y are rational integers satisfying (1), and put f = x—ay. Clearly £ is an
algebraic integer in K, and we have

|fD... f®| = m. (40)
Further we assert that an associate y of f can be determined such that
log (m=1"[y])| < €y (1<j<n) (41)

for some number Cj as defined in § 6. For, by the properties of 7,, ..., 7, specified earlier,
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every point P in r-dimensional Euclidean space occurs within a distance 7C, of some point
of the lattice with basis )
(log ||, ....,Jog |[7"]) (A <i<r).

On taking P as the point
(log (m=1|f®]), ..., log (m=1"|f0])),

it follows immediately that there exist rational integers b, ..., b, such that
|61 10g 7] +- ... 4b,10g |7 +1log (m=1" |fO))]| < 1€, (1 <j<7),

that is, such that log (m~1n|y))| < rC, (1<j<r), (42)
where Y =B k. (43)

Since now [pi+8| = || (s <j < s+1), we see that the inequalities (42) in fact hold for
each j with 1 <j < n, except possibly for j = s+¢ and j = s+2¢ (only one of which exists
if t = 0). But by (40) and (43) we have

[yD...y®| = m,
that is zﬂ log (m=1n|y0]) =0
j=1

and so the inequalities (41) must hold without exception for some Cs. Note that (41) implies

in particular that the height of y is at most C,m; for the leading coefficient in the minimal

defining polynomial of y is 1, all other coefficients can be expressed as elementary symmetric

functions in y®, ..., y®, and, by (41), each of the latter has absolute value at most e%sm!/»,
The equations

log [yP[p9] = bylog [ni”|+... +b,log || (1 <j<7)
serve to express each number Ab; as a linear combination of numbers log |[y?/f9| with
coefficients given by certain cofactors of A. Thus, denoting by H the maximum of the

absolute values of by, ..., b,, and recalling the supposition that |A| > C7}, it follows easily
that the maximum of the numbers

|log Y[R 1<j<7)
must exceed C;! H for some Cy as above. Let this maximum be given by j = J. Then from
(41) we have
|log (m~1"|f])| = [log |BV[y"| +log (m=1" |y])| = (51 H—Cs,

and since, by (40), n
S log (m~Vn|f0)) = o,
J=1

it follows that log (m~1n|f0]) < — (C51 H—Cy)/(n—1) (44)

for some superscript . In particular we see that |[f®| < Cym!/* and so, again by (40), w
have |f® | =Cz1m'" for some superscript k =+ I. Let j denote any superscript other than
k or [ (this exists since n > 3).

Now the identity (ol — i) fO— (o) — ) f®) = (o) —al) fO,

24 Vo, 263. A.
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together with (43), gives
g (43), 8 apr.abr—a,,, = o, (45)
where a =Py (1<s<r),
() — DY y(®) (K) — oY [Dy(E)
PP oot 0 P BRI ot 20 ¥

(o®) — ) y)
By (44) and the choice of £ we see that
|BOI®] < C; et (46)

Further, by the properties of 7, ..., 7, specified in § 6 and by the preliminary observations
made in that section, a,...,a, represent algebraic numbers with degrees at most n? and
with heights not exceeding some number Cy as above. Furthermore, again by the results of
§ 6, we deduce easily that «,, is an algebraic number with degree at most 78 and with height
at most (Cyym)“r (where C,, in fact depends only on 7). Also, by virtue of (41), we have

(o) — o ®) iy

max (|a,,], &1 7) < Cyyy

and we obtain similarly 0 < |o] < C5|B0)p®). (47)

Itis clear that (45), (46) and (47) imply the validity of (4) with z replaced by r+1 and with
d = $C31, provided that H > 2C; Cy C5.

We apply theorem 3 with «, z and § defined as above, with d = n® and with « given by
k"= %(k+n+1); this choice for « is in accordance with the hypotheses since clearly
k' >n+1,r<n—1andr<n—1ifa,...,a, are not all real. We conclude that

H < max (C",{C,log (Cyym)}*) (48)

for some effectively computable number C’ depending only ont n, « and the coeflicients
of f. But now the identities

X = (a(Q)lb’(l)__a(l)ﬂ@))/(a(?)_a(l)), Y = (ﬂ(l)_ﬂ(z))/((x(?)_.a(l))
mply that max (|, |y1) < Cymax (|40], 6],
and by (42) and (43) we obtain '
[P = |yigP=br gD~ <mnCH (1 < < n).

Hence (48) gives max (x|, |y ) < mi/"max (C", Clles(Cami)

for some C” = C"(n, &, f). Since k > k' > n+1, the number on the right is certainly less than
C elogm¥ for a suitable C, and this completes the proof of the theorem.
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